Agentless Cloud-wide Monitoring of Virtual Disk State

Wolfgang Richter

CMU-CS-15-138
October 2015

School of Computer Science
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA

Thesis Committee
Mahadev Satyanarayanan, Chair
David G. Andersen
Gregory R. Ganger
Vasanth Bala (Google)
Canturk Isci (IBM Research)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Copyright © 2015 Wolfgang Richter

This research was sponsored by the National Science Foundation under grant numbers CNS-0614679,
CNS-0833882, IIS-1065336, DGE-0750271, and DGE-1252522, the Defense Advanced Research Projects
Agency under grant number FA8721-5-C-0003, Intel ISTC-CC, IBM, and Vodafone. The views and conclu-
sions contained in this document are those of the author and should not be interpreted as representing the
official policies, either expressed or implied, of any sponsoring institution, the U.S. government or any other
entity.

Keywords: Agentless, Agentless Monitoring, Agentless Cloud Monitoring, Cloud, Cloud Com-
puting, Cloud Monitoring, Deduplication, Deduplicated Snapshotting, Distributed Streaming Virtual
Machine Introspection, File Deduplication, File Snapshotting, File Monitoring, Incremental Hash-
ing, Introspection, Optimistic File Snapshotting, Retrospection, Searchable Backup, Snapshotting,
Virtual Disk, Virtual Storage, Virtual Machine, VM, Virtual Machine Introspection, VMI

Abstract

This dissertation proposes a fundamentally different way of monitoring persistent storage. It intro-
duces a monitoring platform based on the modern reality of software defined storage which enables
the decoupling of policy from mechanism. The proposed platform is both agentless—meaning it op-
erates external to and independent of the entities it monitors—and scalable—meaning it is designed
to address many systems at once with a mixture of operating systems and applications. Concretely,
this dissertation focuses on virtualized clouds, but the proposed monitoring platform generalizes
to any form of persistent storage. The core mechanism this dissertation introduces is called Dis-
tributed Streaming Virtual Machine Introspection (DS-VMI), and it leverages two properties of
modern clouds: virtualized servers managed by hypervisors enabling efficient introspection, and
file-level duplication of data within cloud instances. We explore a new class of agentless monitoring
applications via three interfaces with two different consistency models: cloud-inotify (strong
consistency), /cloud (eventual consistency), and /cloud-history (strong consistency). cloud-
inotify is a publish-subscribe interface to cloud-wide file-level updates and it supports event-based
monitoring applications. /cloud is designed to support batch-based and legacy monitoring applica-
tions by providing a file system interface to cloud-wide file-level state. /cloud-history is designed
to support efficient search and management of historic virtual disk state. It leverages new fast-to-
access archival storage systems, and achieves tractable indexing of file-level history via whole-file
deduplication using a novel application of an incremental hashing construction.

I dedicate this work to those that have helped me make my dreams become reality. First, [must thank my
maternal grandparents who supported me academically and my, at times, expensive explorations with
computers and electronics. Gratitude alone is not nearly enough. I will never forget your legacy. Second, I
must thank my paternal grandparents for showing me how people can persevere through the worst of times
the world has ever seen and thrive. Third, for my parents who fostered a home filled with the digital
wonders of the modern world, and my siblings for always being there for me. Fourth, to Ma and Baba for
support and guidance through the fog of stress. Finally, and most importantly, to Debjani Biswas my
companion for life, my wife. Thanks for putting up with my long hours, wacky ideas, and going on
adventures with me around the world.

Acknowledgments

The PhD process is a herculean effort, of which I am only one small part. Along the way I have been
aided by the smartest people at the top of the field of Computer Science. My success is attributable to
the great opportunities presented to me by the academic environment fostered at Carnegie Mellon
University’s School of Computer Science. I have been honored with public support through the
NSF, and must thank the American people for supporting scientific efforts across the country. Of
course, my interactions with many people along the way have shaped me, formed my research focus,
and honed my skills. Here I thank many by name, but there are many more than I could possibly
name. Thank you to everyone that interacted with me during my tenure as a graduate student. We
all truly stand on the shoulders of giants.

Of course, a large part of my success is due to excellent guidance and tutelage under my advi-
sor Mahadev Satyanarayanan. Over the many years, our group administrative assistants including
Tracy Farbacher, Angela Miller, and Chase Klingensmith always made my day better and ensured
academic life was smooth. Deborah Cavlovich is amazing taking away every possible headache that
arose during graduate school. Without her, scheduling classes, staying on top of PhD administrative
overhead, and practically anything else would have been a nightmare. Catherine Copetas is a friend
and helper to all students at CMU, she enriched my life by offering me many opportunities to meet
new and interesting visitors. Karen Lindenfelser and Joan Digney always helped organize events via
the SDI and the PDL. Their efforts made our lives less stressful, and more fun. Of course, conver-
sations and nights well spent with friends led to new ideas and filled my life with fun. Thank you
especially Yoshihisa Abe, Leman Akoglu, Brandon Amos, Sivaraman Balakrishnan, Field Cady, Zhuo
Chen, Jim Cipar, Bhavana Dalvi, Leigh-Ann DeLyser, Ruta Desai, Bin Fan, Kiryong Ha, Wenlu Hu,
Shiva Kaul, Elie Krevat, Anvesh Komuravelli, Jayant Krishnamurthy, Meghana Kshirsagar, Hyeon-
taek Lim, Michelle Mazurek, Brendan Meeder, lulian Moraru, Richard Peng, Amar Phanishayee, Kai
Ren, Mehdi Samadi, Raja Sambasivan, Vyas Sekar, Vivek Seshadri, Jiri Simsa, Wittawat Tantisiriroj,
Ekaterina Taralova, Alexey Tumanov, Vijay Vasudevan, Kevin Waugh, Gabriel Weisz, Lin Xiao, and
Erik Zawadzki. For welcoming me to CMU, thank you Matthew Delaney, Jason Calaiaro, and
Michael Mackin. Thank you all for the wonderful memories, they will stay with me for life.

Last, but not least, | must thank a lot of my mentors and close research peers. This includes
Glenn Ammons, Hrishikesh Amur, David Andersen, Vasanth Bala, Nilton Bila, Sastry Duri, Canturk
Isci, Michael Kaminsky, Todd Mummert, Padmanabhan Pillai, Darrell Reimer, and Srinivas Seshan.
The research scientists in my group Benjamin Gilbert, Adam Goode, and Jan Harkes have each

vii

viii ACKNOWLEDGMENTS

served as mentors and an inspiration as I developed my systems research skills. Thanks for keeping
me technically honest, humble, and holding me to the highest of standards. Each and every one of
you has a hand in my future career and success.

Contents

Contents

List of Figures

List of Tables

1 Introduction

1.1

1.2
1.3

Problem Statement and Scope
1.1.1 Bridging the Semantic and Temporal Gaps
1.1.2 Bounding Overhead
1.1.3 Generality e e e e e
1.1.4 Storing and Indexing Historic Changes
Thesis Statement L e
Contributions L

2 Distributed Streaming Virtual Machine Introspection (DS-VMI)

2.1
2.2

2.3

2.4
2.5
2.6

Overview of the DS-VMI Prototype
Hypervisor, Kernel, and File System Requirements
2.2.1 Hypervisor Virtual Storage Hooks
2.2.2 Guest Kernel Invariants oL,
2.2.3 File System Invariants
2.2.4 Correctness of DS-VMI Relative to Snapshotting
Crawling Initial Virtual Disk State
2.3.1 Impact on Virtual Image Library Operations
2.3.2 Crawlinga Virtual Disk o
2.3.3 An Example Journaling File System: ext4
2.3.4 An Example Closed Source File System: NTFS
2.3.5 An Example Non-Journaling File System: FAT32
Asynchronous Queuing of VM Writes Lo ..
Introspecting Live Virtual Disk Writes.
Live Attachment and Detachment,

ix

ix

xii

»
<

(o)W O2 RO, N SN SN S I)

Live Crawling and Attaching
Detaching Introspection
Integration with Existing Clouds
Designing an API within OpenStack
Evaluating Overall Overhead
Experimental Setup
DS-VMI Tunables
Light-rate Small Writes: Modified Andrew Benchmark
Clustered Large Writes: Installing Software
Moderate-rate Small Writes: PostMark
Reducing Memory Footprint: Lazily Loading Metadata
Dropping Writes
Limitations of DS-VMI

Monitoring Limits
Technologies Defeating DS-VMI

cloud-inotify: Cloud-wide File Events

cloud-inotify’s Design and Implementation
Event-driven File System Workloads
Continuous Compliance Monitoring
3.2.2 Real-time Log Analytics
Sources of Latency
Evaluation of Latency
Using cloud-inotify in a Research Cloud

/cloud: A Cloud Synthesized File System
Design and Implementation of /cloud
Implementation with POSIX Read-only Semantics
Limitations of Normalization
Metadata Versioning
Applications
Exploring a /cloud Mount

/cloud-history: Searchable Backup
Transforming Live State into History
Desired Properties
Learning from History: a Backup Case Study
Description of Dataset
Effect of Duplication

Analysis of Trends
5.3 Sources of Whole-file Duplication

CONTENTS

CONTENTS xi

7

5.3.1 Impact of Whole-file Deduplication on Indexing Workloads 70
5.4 Architecture of /cloud-history 72
5.4.1 Consistently and Efficiently Naming Files without Coordination 73
5.5 Storing and Indexing Historic State 75
5.5.1 Conversion to a File-level Update Stream 76
5.5.2 Inferring File Versions with Optimistic File Snapshotting 76
5.5.3 Garbage Collecting Stale Block Writes 78
5.5.4 Whole-File Indexing and Deduplication 79
5.5.5 Block-Level Deduplication and Compression 79
5.6 Reconstructing File Versions o .. 81
5.6.1 Efficient Object-Level Access 82
5.6.2 Arbitrary Query Search Lo Lo o 83
5.6.3 Evaluating Inferred File Versions 83
5.7 Securing Search 83
Future Work 87
6.1 Evaluating the Effect of Staleness in /cloud 87
6.2 Evaluating the Design Decisions of /cloud-history 88
6.2.1 Sustained Ingest Bandwidth: Single vs Many Logs 89
6.2.2 Measuring Time toIndex 89
6.2.3 Effect of Hashing Choice 89
6.3 Generating Introspection Code from File System Drivers 89
6.4 Designing an Introspectable File System 90
6.5 A Storage Introspection Language for Policy Enforcement 91
Related Work 93
7.1 Snapshotting Derived History 94
7.2 Versioning File Systems 95
7.3 Smart Disks 96
7.4 Virtual Machine Introspection 97
7.5 Agent-based File-level Monitoring 97
7.6 Agentless File-level Monitoring 98
7.7 Analyzing Backup Systems L L 99
7.7.1 Granularity of State 100
7.7.2 Granularity of Time 100
7.7.3 Complexity of Supported Queries 101
7.7.4 Level of Consistency i 101
775 Levelof Scale 102
7.7.6 Backup Format 103

7.7.7 Types of Storage Targets 104

7.7.8 Typesof Input Systems
7.7.9 ProtectionRadius L oo
7.7.10 Modern Backup System Implementations

8 Conclusion

Bibliography

List of Figures

1.1 ClamAV’s [21], a file system scanning agent, memory overhead and aggregated resource
usage (Figures 1.1(a) and 1.1(b) reconstituted from [124])..

2.1 Three-stage DS-VMI architecture.,
2.2 KVM architecture showing userspace, kernel, and physical boundaries. Figure recon-
stituted from [58]. L
2.3 QEMU duplicates writes over a TCP socket using the Network Block Device protocol as
its application-layer protocol. These writes queue for introspection, and are transferred
for introspection either via an in-memory transport or another TCP hop.
2.4 Combining file-level updates recorded as A with the file system at time 7 yields a file
system equivalent to the file system at time 7’. The file systems may be mutating state
on disk when the snapshots occur. L Lo L
2.5 An MBR BSON document example showing details about an entire virtual disk, starting
fromthe MBR. e
2.6 View of a raw disk split into partitions by the partition table within an MBR at the start
of thedisk.
2.7 View of an ext4 partition and critical metadata on-disk structures. The structure in
the data section is a directory entry.
2.8 View of a NTFS partition showing the complexity of reading a single file from the Master
File Table. Although all in one location, NTFS has the most complex on-disk layout out
of all the considered file systems.
2.9 View of a FAT32 partition showing traversing the root directory and looking up the
start of a file via a singly linked list in the FAT data structure. The FAT portion of the
disk is an array of linked lists defining the clusters assigned to a file byte stream.
2.10 Connecting QEMU to DS-VML

xii

10

LIST OF FIGURES

2.11

2.12

2.13

2.14

2.15
2.16

3.1
3.2

3.3

3.4

4.1

4.2
4.3

5.1

These graphs show the used memory by DS-VMI, observed write pattern of the VM
guest, and the flush events triggered within DS-VMI during the Modified Andrew
benchmark.

These graphs show the used memory by DS-VMI, observed write pattern of the VM
guest, and the flush events triggered within DS-VMI during the SW Install benchmark.

These graphs show the used memory by DS-VMI, observed write pattern of the VM
guest, and the flush events triggered within DS-VMI during the PostMark benchmark.

These graphs show the used memory by DS-VMI, observed write pattern of the VM
guest, and the flush events triggered within DS-VMI during the bonnie++ benchmark. .

Memory usage by Redis for each experiment. Only a single run was examined.

Effect of dropping data writes on DS-VMI efficiency in terms of normalized overhead.

An example monitor in Python. oo

Latency CDFs demonstrating feasibility of near-real-time event-driven agentless mon-
itoring using cloud-inotify. L

Writes are introspected by DS-VMI. DS-VMI was activated by a cloud user using a
standard OpenStack command-line utility extended to support our DS-VMI cloud API.
Emitted file-level updates are sent to the user via a front-end WebSockets [38] proxy
over the Internet to a web browser. L oo L.

Textual display of file-level updates affecting /var/log/syslog within an unmodified
executing Ubuntu 14.04 Server. Red text denotes the affected byte range, blue text is
the file contents being written, and the bottom black text is a metadata update.

Normalized metadata kept via DS-VMI for /cloud and other purposes. There is a list
of blocks associated with the file not shown. And, in the case of directories, also a list
of files within the directory..

/cloud implementation L L

Command-line interaction with /cloud. In this demonstration, we mount an ext4 file
system using the normal kernel module via the mount command, and /cloud via the
gray-fs command. We then use normal, legacy tools such as 1s, find, and diff to
show that /cloud has the same coverage as the Linux kernel’s ext4 module for this
file system. The file system being introspected was an ext4 file system residing within
a 20 GiB virtual disk of an Ubuntu 12.04 Server 64-bit guest.

Deduplicating at a file-level leads to a 9.1x reduction in the number of files to index,
and a 7.2x reduction in storage requirements (NC State, VCL Windows-based images).
The raw bytes and files appear to grow linearly. The additional unique bytes and files
appear to grow sub-linearly, and possibly logarithmically. Linear fits are shown as the
red lines. L

xiii

37

38

38
39
41

50

55

Xiv

5.2

5.3
5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.12

5.13

LIST OF FIGURES

Deduplicating at a file-level is even more effective when applied to backups of systems.
The unique file curve flat lines as more and more snapshots were taken of file systems
by Deltaic. Linear fits are shown as thered lines. 66

Effect of file-level deduplication on virtual disks in a virtual disk library. 69

File-level deduplication not only saves space, it also saves immense amounts of com-
putation. On average, the three workloads shown above experienced a 5x speedup by
using just an application-agnostic unique file index. These experiments were carried
out on a single node, on the NC State VCL Cloud image dataset. 71

An overview of /cloud-history’s architecture capturing writes via the hypervisor
and translating them into a file-level update stream. The final stage stores the file-
level update stream into per-file logs for indexing, garbage collecting, and application
of retention policies. e e 72

Running time of operations for three different hashing schemes. N is the number of
blocks in a file, N/ is the number of updated blocks in a batch update, f the fanout
of the tree, and P is the number of processors. H stands for hashing, MT for Merkle
Tree, SLMT for single-level Merkle Tree, and TH for Incremental Hashing [12]. For
the updates, S stands for Sequential, for random, and B for batch. 74

The incremental hashing construction.. 75

On the left-hand side are system calls occurring in userspace within a guest. These
system calls cause block writes to a virtual disk. The corresponding block writes are
introspected resulting in the high level events shown on the right-hand side of this figure. 76

Files are optimistically snapshotted after waiting time Apneon. MD stands for metadata,
and the first write to position 4096 is gray because the second write supersedes it,
representing an opportunity for garbage collection., 77

Garbage collection is especially important for append-only style workloads, such as
those for log files. Here we see some guest process continuously writes lines into a
log file. Blocks are written many times with redundant log entry data. Only the latest
updates matter when a versionis created. L. Lo L. 78

This figure shows two VMs (notionally, they could be the same VM) writing the same
file. Their metadata which includes timestamps probably difters, but the data of the files
is identical. Block-level deduplication is necessary to reclaim this wasted storage space.
Also note that the metadata updates are often small and highly compressible. 80

Shown are the effects of applying compression (LZ4) and block-level deduplication on
the NC State dataset via ZFS. 80

/cloud-history exposes versions of files via a simple synthetic FUSE file system which
gives legacy indexers access to historic state without being rewritten. This figure shows
that reads may come from the original file, or the file-level update stream log. Duplicate
file versions are symlinked to a canonical version. 81

5.14 This shows the final version format after garbage collection, hashing, and timeout poli-
cies are applied. Note that metadata updates are coalesced in the header, and data
updates are coalesced into a distinct set of writes to each block of a file. Each part of a
version takes up a single on-disk block. L. o Lo oL

5.15 Reading files means reconstructing state from potentially multiple historic versions. . .

5.16 The arrival times of writes to a file without using sync() from within the guest OS.
With an aggressively synchronizing guest OS, only 50% of the file versions matched.
This demonstrates the worst case, that versions might not match always. Note that
the history was compressible, for both traces we collected between 42 - 47 MiB which
compressed down into 900 - 700 KiB. L oo,

List of Tables

2.1 Metadata size uncompressed, compressed, crawl time and load time into Redis (20
runs) as a function of used virtual disk space. Used is used disk space reported by df,
Raw is the uncompressed metadata, gzip is compressed metadata with gzip --best,

Crawl is the time taken to index a disk, and Load is the time to load metadata into Redis. 21

2.2 Metadata size uncompressed, compressed and load time into Redis (20 runs) as a
function of number of inodes. The headers are the same as in Table 2.1 except the first
column is a unitless count of live inodes in the file system rather than used disk space.

2.3 These are the REST API calls extending OpenStack for Introspection.

2.4 List of DS-VMI runtime tunables which affect performance.

2.5 Peak memory usage of the Async Queuer, inference engine, and Redis combined.

2.6 Lazy loading optimization effect on memory.,

3.1 Examples of filter specifications, demonstrating the use of pattern matching. The
cloud-inotify channel implementation supports glob-style pattern matching..

4.1 The customized virtual file system calls required to implement /cloud. /cloud returns
EROFS on any attempt to open a file for writing.,

5.1 This table shows the details of our study of a research backup system used in production
support of a research group at CMU. Parenthetical values are standard deviations, unless
otherwise noted. e

XV

22
34
36
39
40

56

XV1

5.2
5.3
5.4

7.1

LIST OF TABLES

R Source Tree Similarity 68
OpenMPI source tree similarity. 68
Linux Kernel Source Tree Similarity 69

Table comparing modern backup systems. In the scale column, I stands for Ingest
Bandwidth, N for Number of Objects, and S for Space Requirements. In the PR column,
C stands for Corruption, and FT stands for Fault Tolerant. 106

Chapter One

Introduction

The advent of cloud computing coupled with the increasing trend of accessing storage over the
network provides us with an opportunity to rethink how we monitor persistent storage. Tradition-
ally, storage devices were tightly coupled with the operating system. The operating system acted as
a facilitator of interaction with hardware for userspace applications. This was done primarily for
protection and performance. The kernel interacted with storage devices via a driver and enforced
constraints which userspace had to obey. This enabled the creation of crash-consistent file systems
and robust storage of data culminating with advanced file systems like ZFS [133]. Kernel medi-
ated direct memory access ensured fast reads and writes to persistent storage. Though the storage
landscape is entirely different today, we still work with monolithic systems which believe they are
tightly coupled to their underlying storage. Especially in virtualized clouds, the virtual machine
abstraction, by design, prevents deep understanding of where resources come from.

But this tight coupling is an illusion. Within modern clouds there is either a layer of virtualization
between a guest kernel and its storage, or the storage is served over the network. In many cases,
both a layer of virtualization and a network hop exist between an executing guest and its storage.
This reality pervades the enterprise in the form of network attached storage arrays. In the home,
media servers are being used to save and serve large files such as movies via network file systems.
Thus, it is no longer true that protection and performance are guaranteed by a monolithic kernel.
The new reality decouples storage from its executing environment. However, higher performance,
better resilience, and stronger protection are achievable if we rethink storage with a modern lens.

Higher performance and better resilience to data loss induced failures are out of the scope of
this dissertation. But it is trivial to imagine why they are achievable with modern cloud computing.
Clouds horizontally scale services such as storage into large distributed systems. This means indi-
vidual cloud instances writing into cloud storage can obtain bandwidth far exceeding the bandwidth
of a single drive, or even that of a RAID array. By quickly replicating data across cloud datacenters,
even large-scale disasters become possible to survive—impossible with the more monolithic, tightly
coupled version of storage. Stronger protection is within scope, and the basis upon which a lot of
this dissertation was completed. The decoupling of layers in the storage realm enables separation

2 CHAPTER 1. INTRODUCTION

of mechanism, policy, and enforcement. This reflects lessons learned very early on in the network-
ing and OS communities, but never truly applied to storage which traditionally remained tightly
coupled from storage device to kernel driver and file system.

Early on in networking the value of separating mechanism and policy, along with a need for
gatekeeping network packets, was clearly recognized. Mogul et al. describe implementing user-
level packet filtering and inspection |79, 80]. Their design separated the mechanism—kernel-level
hooks—of capturing packets, and the implementation—unprivileged, userspace applications—of pol-
icy. The importance of separating policy and mechanism was first described in the context of the
Hydra research project by Levin et al. [63]. This early work led to the development of deep packet
inspecting (DPI) firewalls in networking. DPI firewalls have three attractive properties. First, they
are decoupled from the hosts that they monitor except for a network connection. Thus, they have
the luxury of being immune to individual host misconfiguration or compromise. In other words, the
firewall gatekeepers continue operating even with multiple misbehaving network hosts. In addition,
they can not be turned off by the hosts, and the hosts can not affect the policy specified to the
firewall. Importantly, these properties hold for both hosts within the firewall’s protection boundary,
and also for external hosts.

This dissertation explores adding functionality similar to deep packet inspection into the storage
layer of cloud infrastructure. Although we use the word cloud, this rethinking of monitoring storage
applies in general to storage whether or not it is virtualized. Access over the network technically
makes this task easier to accomplish. In this dissertation, much like network-based firewalls, we
propose implementing deep file-level monitoring via interpretation of storage writes. Whether in
the absence of, or in addition to, a network hop, hypervisors act as a mediator between guest and
storage in clouds. This unique position makes them the best location to implement our mechanism.

By placing file-level monitoring within a layer between kernel and storage we gain three prop-
erties which are impossible without such decoupling. First, the monitoring becomes immune to
guest misconfiguration or compromise. Should a virus infect a guest, it can not hide its tracks if it
touches persistent storage. When file-level monitoring is coupled into a monolithic system, viruses
can hide. Rootkits which compromise the kernel have the capability of masking their presence
entirely. Should an operator misconfigure a guest, file-level monitoring can fail. For example, the
wrong permissions set on a log folder causes log analytics processes to fail and not perform their
job. Second, guests become protected from bugs affecting file-level monitoring agents, and mali-
cious monitors. No software is bug free, thus we must plan for bugs within file-level monitors—even
those designed to protect such as virus scanners [83, 84]. The effect of such bugs is devastating
because virus scanners often have root access to perform their job of finding viruses. Should a
file-level monitoring process actually have malicious designs on the host it monitors, the decoupling
of policy—what a monitoring agent has access to at a file-level—and mechanism—the method of
capturing file-level state—provides protection. In a monolithic system, one has no choice but to
run monitoring agents at the privilege level they request with direct access to resources. Third,
file-level monitoring implementations become easier to scale across different operating systems
and applications. They are easier to implement because they do not have to operate within the

1.1. PROBLEM STATEMENT AND SCOPE 3

same environment as the monolithic system producing the writes. The file-level monitoring occurs
decoupled from the environment generating the writes.

Thus, we believe the time to rethink storage is now upon us. We also believe that the strong
guarantees along with the easier implementation of file-level monitoring make decoupling policy
and mechanism paramount for scaling management of storage in the future. Monitoring subsumes
a large portion of the required upkeep of individual systems, and is a key problem facing adminis-
trators of any computing system [69]. Examples of monitoring include routine virus scanning [21],
intrusion detection [118], log file analysis [112], and configuration auditing [119]. In the mono-
lithic model, state-of-the-art monitoring is accomplished with generally third-party agents [51, 60|
embedded within the system they monitor.

Embedding a potentially untrusted, third-party agent within the boundary of an enterprise in-
creases its attack surface—the agent may be hijacked by an intruder and used maliciously [83, 84].
In addition, agents consume valuable resources, and are unpredictable in their resource consump-
tion [60]. An agent using excessive memory causes memory pressure and potentially paging to disk,
slowing down or even halting critical services. Finally, if a system is compromised, the agent may be
tampered with or deliberately fed false information. In the case of a compromise or misconfiguration
that is initially undetected, agents can not be trusted at all.

1.1 Problem Statement and Scope

This dissertation rethinks monitoring persistent state in the modern era of virtualized cloud com-
puting, and network attached storage. Based off of the observation that storage is accessed either
via a hypervisor or the network, this dissertation proposes deep inspection of disk writes for mon-
itoring purposes. Similar to deep packet inspecting firewalls, this dissertation proposes decoupling
mechanism and policy in the storage context. It seeks to answer the primary question of how do we
securely monitor file-level state as generally as possible? In this context, security means guaranteed en-
forcement of policy both ways between a monitored system and the system performing monitoring.
In other words, monitored systems should never fear the monitoring agents, and monitoring agents
should never fear the systems they monitor. Generalizable in this context means generalizing across
the combinatorial space of operating system types and applications.

This dissertation describes a mechanism and interfaces on top of that mechanism which enables
separation of capturing state and the logic for monitoring that state. Thus, monitoring both online
and offline persistent state is within the scope of this dissertation. Enforcement of policies is
assumed to be a solved problem within cloud computing. Network quarantining and virtual machine
suspension are both pre-existing techniques for isolating and stopping misbehaving cloud instances.
Thus, enforcement is outside of the scope of this dissertation.

Online persistent state refers to live file systems as they mutate in real-time within virtual
disks. Offline persistent state refers to backups or snapshots of file systems. As a guiding principle
throughout this dissertation, mechanism and interface designs must operate without the explicit

4 CHAPTER 1. INTRODUCTION

support of a monitored system. For the remainder of this dissertation, we consider the terms
monitored system, guest, cloud instance, and virtual machine to be synonymous and interchangeable.

There are four key challenges enumerated below that this dissertation addresses in answering
this fundamental question.

1.1.1 Bridging the Semantic and Temporal Gaps

The normal path for an application system call destined to write to a disk moves from a guest’s
userspace, to the guest’s kernel, and then out to the hypervisor modifying the virtual disk. This path
is leveraged by agents as they can hook system calls, register for disk state change notification, trace
disk operations, and generally use the guest’s kernel to directly accomplish their job. An agentless
solution, by definition, does not rely on any guest support whatsoever. Even relying on guest
hints makes an agentless method vulnerable to guest misconfiguration or compromise. Agentless
methods receive black box operations at the lowest abstraction layer, and must reconstruct or infer
higher-level meaning.

The challenge is to bridge this semantic gap between black box disk-level operations and their
white box file-level interpretation with significantly less context than the guest kernel. In addition,
layers often reorder operations for better throughput or latency. File systems generally update data
first, metadata second. Thus, there is an additional temporal gap—the time between when operations
flush to disk, and when they have semantic meaning within the guest file system. Atomic operations,
for example, wait until their instructions finish before persisting that their operation finished. The
temporal gap is the time between the start of the atomic operation, and the persistence of their
completeness.

1.1.2 Bounding Overhead

Monitoring clearly comes at a cost to the system being monitored. We monitor systems for vari-
ous reasons, but if the monitoring cost exceeds the value of the benefit derived from monitoring,
then monitoring does not make sense. Thus, there must be boundable overhead for any monitoring
solution—agent or agentless. Should monitoring require upgrading the hardware capabilities of all
hosts in a production cloud, for example increasing their memory, this cost will more than likely
exceed the value of monitoring. In addition, a key metric in virtualized cloud environments is con-
solidation. Monitoring overheads directly hurt the consolidation factor of a cloud environment by
using resources which could have otherwise been devoted to valuable production workloads. In the
extreme case, boundable overhead means the capability of completely eliminating overhead. This
implies the capability of turning on and off monitoring at will.

1.1.3 Generality

Monolithic design places every component inside the blackbox boundary of the virtual machine.
This is attractive because all of the configuration state, necessary libraries, and versions of key

1.2. THESIS STATEMENT 5

system components are all kept together for a specific application. Indeed, this model has proven
wildly successful with the use of virtual appliances for deploying software. However, this means
that monitoring agents must have implementations and logic for each operating environment they
support. The interfaces to an agentless monitoring platform should not needlessly tie themselves to
an OS family or specific environment. Agentless monitoring should provide a single set of interfaces
to persistent state that not only scales in the number of monitored guests, but also in the types of
file systems and OS’s it can monitor. In other words, agentless monitoring must generalize across
OS’s and applications.

1.1.4 Storing and Indexing Historic Changes

As promised, this dissertation handles not only online persistent state, but also offline persistent
state. Due to modern trends in backup architectures providing low-latency, high-bandwidth access
to data [81], we believe a critical feature of modern backup should be search—especially with tunable
indexes. Backup subsumes so many different systems that a single indexing scheme seems unlikely
to fit all present and future search needs. Thus, a key feature of modern backup should be optimized
indexing over stored objects. In this dissertation we rethink storage formats for file-level backups
given the existence of our storage monitoring mechanism. In addition, we explore techniques for
reducing the time to index in an application-agnostic manner.

1.2 Thesis Statement

This dissertation claims that agentless monitoring of disk state provides stronger security and correctness
guarantees than traditional agent-based approaches, is achievable with modest modifications to modern
operating environments, and enables generalizability across the combinatorial space of operating systems,
libraries, applications, and their versions. The cost of realizing agentless monitoring of disk state lies
directly with the effort needed to deeply interpret virtual disk write operations—specifically the on-
disk layout and data structures of file systems. That is to say, it is a capital intensive endeavor, but
one that pays off over time. The upfront costs of writing file-system-specific introspection logic are
amortized over a long time period. This is because file systems rarely change their on-disk layouts.
The vision of this thesis for cloud computing is that by slightly weakening the strong isolation
between virtual machines and their underlying cloud infrastructure, we can provide a more secure
environment by taking advantage of the tension between cloud customer, cloud operator, and mon-
itoring vendors. Cloud customers wish to bound the information that monitoring vendors access.
Monitoring vendors wish to maintain correct configurations and views of monitored state. Cloud
operators wish to increase revenue by offering valuable services to their customers. Thus, the cloud
operator is perfectly poised as a mediator guarding paying customers from monitoring vendors, and
providing information independent of customer misconfiguration or compromise to the monitoring
vendor. Monitoring vendors benefit with greater name recognition via the cloud marketplace, and
interfaces which ease their generalization across cloud customer operating environments.

6 CHAPTER 1. INTRODUCTION

The research questions this dissertation addresses are: (1) What is the minimal set of extensions
to modern environments needed for agentless persistent state monitoring? (2) How does agentless
monitoring of persistent state change the implementation of file-level monitoring? (3) How does
agentless monitoring of persistent state change the implementation of snapshotting? (4) How can
backup systems minimize the time to index all stored objects and their versions?

1.3 Contributions

This dissertation challenges the status quo monolithic system design which embeds monitoring
agents into the systems they monitor, with an agentless vision separating the mechanism of mon-
itoring from the policies which act upon monitored information. In so doing, this dissertation
disrupts a billion dollar industry [40]. We show that the long path towards an agentless world, with
all of its benefits, is in fact tractable. It is feasible with most modern hypervisors to pursue today,
in some cases with minimal disruption to existing deployments and operations. Should the mech-
anism described in this dissertation become widely available, switching to agentless monitoring is
very difficult to argue against.

Agents can not fundamentally offer the guarantees of an agentless approach. No agent-based
solution can guarantee isolation from monitored system misconfiguration or compromise. By im-
plementing policy with mechanism inside the monitored system, corruption of either can directly
affect the other. No agent-based solution can guarantee that its bugs will not affect the monitored
system. In fact, guaranteeing bug freeness is undecidable without constraints. No agent-based so-
lution easily generalizes across operating environments. Because of the deep coupling of agent and
the monitored system, agents must needlessly cater to their environment rather than just their task.
Thus, if the technology espoused in this dissertation is widely implemented, it becomes very difficult
to justify the further use or development of agent-based monitoring solutions for persistent state.
Agentless solutions also enable optimizations which are very difficult to implement with agent-based
solutions. Agentless monitoring has the capability of leveraging global knowledge about collections
of systems and resource allocations. For example, agentless monitoring can deduplicate across col-
lections of virtual disks and schedule monitoring tasks efficiently with production VM workloads
without mixing resource allocations.

Figure 1.1 shows the wins with an agentless model that leverages global knowledge—file-level
duplication across VMs—for a file system scanning workload. In this example, traditional scan-
ning agents execute independently inside each VM. It would be non-trivial and also inefficient for
each type of scanning agent to implement file-level deduplication independently. As reflected in
Figure 1.1(a), a virus scanning agent reads duplicated files multiple times wasting significant read-
bandwidth. Processing time is also wasted scanning the same files over and over again as reflected in
Figure 1.1(b). Simply running an agent uses resources of the VM—in this case significant amounts
of memory as shown in Figure 1.1(c). Instead of wasting this memory n times for VMs which
might all have the same files, an agentless implementation could bound the memory usage devoted
to virus scanning across the entire cloud. These wins are not limited to file system scanning work-

1.3. CONTRIBUTIONS 7

loads. First, the cloud can separately bound global resources devoted to any monitoring workload
by decoupling its execution from individual VM execution. Second, deduplication also benefits
streaming workloads. For example, agents monitoring changes to configuration files could receive
coalesced updates from multiple VMs across the cloud rather than processing duplicate file-level
changes individually. These optimizations enhance the scalability of future clouds, and directly lead
to lower total cost of ownership and higher revenue for all parties involved.

g 16000
=1 3
g 2 1000
f=4 o
g 20 o
g L) —~ Scan
2 § § Start
1] «» 8000 =
2 ° > — +ClamAV
S 10 2 o _
s g g Baseline
5 I] = 3 600
g
$ mh ol

0 1 2 3 4 5 6 7 8 9 I]

Number of Virtual Disks 2 3 4 5 6 7 8 9
Number of Virtual Disks 300
M Baseline [File-level Deduplication M Baseline [File-level Deduplication Time
(a) Aggregated read bandwidth. (b) Aggregated processing time. (c) Memory of a single VM.

Figure 1.1: ClamAV’s [21], a file system scanning agent, memory overhead and aggregated resource
usage (Figures 1.1(a) and 1.1(b) reconstituted from [124]).

The contributions of this thesis, in addition to answering the aforementioned research questions,
are:

+ Demonstrates feasible, efficient, generalizable agentless monitoring of disk state (Chapter 2)
Full reference implementation released under the Apache v2.0 License
Support for the NTFS, ext4, and FAT32 file systems

API integration into the OpenStack cloud software

+ Demonstrates three generalizable interfaces to disk state (Chapters 3, 4, and 5)
cloud-inotify - for real-time agents (publish-subscribe interface, live writes)
/cloud - for scanning/batch agents (legacy applications, file system interface, on-disk)

/cloud-history - for historic data access (file-level deduplicated snapshots, archived)

+ A backup study of a research group with 58 unique hosts over 1 year (Chapter 5.2)
3,268 file system snapshots
1.676 billion referenced files
146 TiB of crawled file state

CHAPTER 1. INTRODUCTION

+ A log-structured format for /cloud-history based on agentless monitoring (Chapter 5.5)
Heuristic time-based snapshotting of files
Garbage collection of log state

Application-agnostic indexing speedup via whole-file deduplication

Chapter Two

Distributed Streaming Virtual Machine
Introspection (DS-VMI)

In this chapter, we explain the design and implementation of our mechanism that exposes live vir-
tual disk state in near-real-time to monitors. The mechanism was designed to operate without any
support from within the monitored system—the guest operating system in a VM. This means that
it operates without paravirtualization, guest modifications, or specific guest configurations. We call
this mechanism distributed streaming VM introspection (DS-VMI). DS-VMI infers file system modifi-
cations from sector-level disk updates in near-real-time and efficiently streams them to distributed
or centralized monitors.

Our approach is based on the fact that virtual disks are emulated hardware. Hence, every disk
sector write already passes through at least the hypervisor system. Remember that it may pass
through many hosts depending on whether or not the backing storage is across the network. We
transparently clone this stream to a userspace process on the hypervisor host, or any of the interme-
diate hosts. This minimally interferes with the running VM instances—generally they occasionally
see higher latency writes. Only guest-flushed updates result in sector writes. Thus, we only handle
file system updates that are flushed from the VM instances. Updates that have not been flushed,
and therefore represent dirty state in guest memory, are outside the scope of this dissertation.

DS-VMI resembles classic VMI [42], with two crucial differences. First, we support streaming
introspection from instances distributed throughout the cloud. The design of DS-VMI and its
interfaces directly stems from this distributed setting. Second, instead of performing introspection
synchronously, we always perform it asynchronously. We are able to minimize stalling of the VM
during introspection because our goal is not intrusion detection: we are only monitoring guest
actions, rather than trying to prevent tainted ones by enforcing policy. As stated in Chapter 1,
enforcement of policy is outside the scope of this dissertation.

The rest of this chapter is organized as follows. Section 2.1 provides a very high-level view of
the architecture of DS-VMI. Section 2.2 describes the requirements necessary from a hypervisor,
file system, and guest kernel for DS-VMI. These requirements include theoretical underpinnings

10 CHAPTER 2. DISTRIBUTED STREAMING VIRTUAL MACHINE INTROSPECTION (DS-VMI)

Virtual
Disk
Disk Crawler

Extracted

Metadata

(a) Disk Crawler: Of-
fline or live, produces
metadata used for infer-
ence.

Sector
Writes

Metadata l
Store

(b) Async Queuer:
Queues instance writes
into an in-memory
queue.

Metadata
Store
Extracted :
—|Inference Engine
Metadata I 9 |
File-Level l

Update Streamﬁi}’j

(c) Inference Engine: loads metadata and in-
terprets queued writes.

Figure 2.1: Three-stage DS-VMI architecture.

grounded in a theory of file systems, and technical requirements such as guest kernel parameters.
This section culminates with the description of an implementation of cloning writes using a modern
hypervisor. Section 2.3 deals with bootstrapping metadata about file systems within a storage device,
primarily a virtual disk, necessary for the DS-VMI runtime. It includes a discussion of the three file
systems we support: NTFS, ext4, and FAT32. Section 2.4 describes the asynchronous architecture
and an optimization to reduce overhead. Section 2.5 describes the DS-VMI runtime from receiving
a sector-level write, to understanding its file-level implications. Section 2.6 describes how DS-VMI
supports live attachment to an already running VM, and also detachment for when operators wish
to drop overhead to zero. Section 2.7 describes extending the API of an existing cloud to integrate
introspection. An evaluation of the overhead of this mechanism on four representative file-level
workloads is provided in Section 2.8. We finish with a description of what DS-VMI is not designed
for, and its fundamental limitations in Section 2.9.

2.1 Overview of the DS-VMI Prototype

We have built an experimental prototype of DS-VMI, for the KVM hypervisor [58] using QEMU [11]
for disk emulation. Via custom introspection code, our prototype supports commonly-used file sys-
tems including ext4, NTFS, and FAT32. We show that our solution works out of the box with
unmodified cloud images of Ubuntu Server 14.04 LTS as provided by Canonical [17]. Our proto-
type has a three-stage architecture. The first stage is an indexing step, performed once per unique
virtual disk (not needed for clones), for initializing. The other two stages are specific to the run-
time of each VM instance executing in a cloud, as shown in Figure 2.1. We summarize these stages
below, with details in Sections 2.3 through 2.5:

1. Crawling and indexing virtual disks. (Figure 2.1(a)) This stage generates indexes of file
system data structures via a component called Disk Crawler. The indexes are generated live or
loaded at instance launch from a central store such as the image library storing virtual disks.

2.1. OVERVIEW OF THE DS-VMI PROTOTYPE 11

2. Capture and cloning of disk writes. (Figure 2.1(b))
This stage is implemented via a userspace helper process called Async Queuer that receives a
stream of write events from a minimally modified QEMU. Normally, it runs at the hypervisor
hosting the VM for low latency, but it can technically receive this stream over the network.

3. Introspection and translation. (Figure 2.1(c))
In this stage, the Inference Engine interprets sector writes, reverse maps them to file system
data structures, and produces a stream of file update events. It operates either at the hosting
hypervisor, or across the network.

To ground our discussion, lets follow an example write originating within a guest VM, and to
better understand how monitoring might work, imagine a monitor application interested in mon-
itoring a file called /home/monitorme/clock. jpg. Imagine that the clock. jpg file gets updated
every 5 seconds by a webcam pointed at a clock with a second hand. Thus, our monitor should see
modifications to this file every 5 seconds. DS-VMI can freely discard the rest of the virtual disk
I/O because no other registered monitor exists.

Let us examine what happens when the file is modified, and for brevity we follow a single virtual
disk block write. First, an instruction executed by the guest VM traps into the KVM kernel module
as shown in Figure 2.2 by the arrow moving out of the box labeled, “Execute natively in Guest
Mode,” into the box labeled, “Handle Exit” The KVM kernel module identifies whether or not the
trapped instruction is for an I/O operation. Because it is an I/O operation, the KVM kernel module
invokes the userspace process emulating I/O devices for the guest VM—in this case a Qemu process.
The steps described here are highlighted in Figure 2.2.

Before issuing the ioctl to the KVM kernel module to return to guest mode, the write is copied
to the DS-VMI process running as a set of userspace processes not shown in Figure 2.2. It arrives at
the Async Queuer shown in Figure 2.1(b). At this point DS-VMI takes over analyzing the write to
determine its file-level implications in the introspection phase shown in Figure 2.1 (c). The first step
requires reverse mapping the partition table. DS-VMI identifies that the write is within a partition
of interest—specifically the ext4 formatted partition containing the clock. jpg file.

The write is then passed to an ext4 specific handler that was initialized by crawling the contain-
ing virtual disk. The handler performs a series of reverse mappings to understand the individual file
being modified and its full path. The first step in the process is to identify if the block represents
data or metadata. Metadata for ext4 includes the superblock, the block group descriptor table,
inode bitmaps, block bitmaps, inode tables, and extent trees. In this case, the write is data so the
first reverse mapping yields the inode responsible for this data block. The next reverse mapping
yields the file name clock. jpg contained within the directory data block for directory monitorme.
The directory data block reverse maps to an inode and this process recursively continues for the
two other parent directories: home, and /. In the actual implementation, we optimize this lookup
with a reverse index on full path names which avoids the recursion.

Thus, the third phase of DS-VMI as shown in Figure 2.1(c) has performed four reverse map-
pings: one for the initial data block to the responsible inode, and three for the three parent direc-

12 CHAPTER 2. DISTRIBUTED STREAMING VIRTUAL MACHINE INTROSPECTION (DS-VMI)

tories. DS-VMI now knows that this data block belongs to a file not a directory, and that the full
path of the file is /home/monitorme/clock. jpg. The next step is to determine if any registered
monitors are interested in this file-level update. In this example, there is a registered monitor for
this file and DS-VMI uses interprocess communication via cloud-inotify (Chapter 3) to notify
the monitoring process that there is new data to consume. The monitoring process receives the data
block, updates its copy of the file, and refreshes the screen if enough new data has been written.
There may be more block writes that are needed before the file is displayable. This process repeats
every 5 seconds as new images are written to disk. If data blocks are written without metadata
structures pointing to them, they must remain buffered by DS-VMI until it associates them with a
file. For exposition, we assumed the data block was immediately associable with a file.

2.2 Hypervisor, Kernel, and File System Requirements

If virtual writes cross a network, introspecting them exactly like a deep packet inspecting firewall
becomes the most logical choice. We assume techniques are already known for building such
solutions. The difference between analyzing network traffic and introspecting file systems comes
down largely to one of memory. Large amounts of memory may be needed for buffering writes and
reconstructing complex file system metadata. If we ignore the more trivial network case, we are left
with the more difficult position of adding introspection support to a hypervisor. This approach is
explored in this dissertation, and this section specifically answers the question what are the properties
of the hypervisor, kernel, and file system which make correct introspection feasible? By correct, we mean
that DS-VMI provides guaranteed consistent views of file-level state.

2.2.1 Hypervisor Virtual Storage Hooks

We assume that either virtual disk writes come over the network, which makes them amenable to
deep packet inspection techniques, or the hypervisor provides hooks to inspect each write. For
correctness guarantees in later sections to hold, it is important that the hypervisor not coalesce or
drop writes. Otherwise properties which we assume true about the guest kernel or guest file system
may prove false due to hypervisor optimizations. Thus, we assume the existence of a method to
essentially duplicate each virtual write to DS-VMI.

This is not a giant leap. Many modern hypervisors already support targeting more than one
virtual storage device in RAID 1 style configurations. For example, KVM has a built-in command
called drive-mirror [92]. The purpose of this command is to mirror a virtual disk to another
location, and it has a mode for duplicating writes. As another example, VMware has a storage driver
called Mirror [122]. Its job is to mirror a drive to another location, and it accomplishes this by
duplicating live writes. For yet another example, Xen has a highly configurable blktap API [90] for
writing custom virtual disk implementations. Using blktap, one could rapidly implement mirroring
as needed by introspection.

2.2. HYPERVISOR, KERNEL, AND FILE SYSTEM REQUIREMENTS 13

Of course, configurations exist which neither send writes over the network, nor through the
costly layers of a hypervisor. Performance critical VMs have storage directly dedicated to them.
In such a configuration, the writes and management of storage are directly handled by the VM.
Obviously, DS-VMI can not operate in such a setting. However, generally DS-VMI does not apply
in such settings anyways, and these configurations are rare in cloud computing. First, the perfor-
mance sensitive application probably can not tolerate the potential latency and overhead from deep
monitoring. Second, such direct access configurations are rare because they enable hardware-level
attacks by guests, prevent useful management services such as snapshotting by the cloud, and expose
the guest to underlying hardware failures. If a guest ties itself to local hardware, migration becomes
impossible should that hardware begin to fail.

Extending an Existing Hypervisor

Figure 2.2 shows the design of KVM’s I/O path when guest I/O’s trap into the hypervisor. By design,
all I/O’s get handed over to a userspace helper program—QEMU. Such a design is ideal for DS-VMI
because the writes already come to userspace for inspection and further routing—very similar to
the proposed design of packet filters [80]. We just need to copy the write stream to a userspace
DS-VMI process from the emulator of the disk. Although QEMU handles both reads and writes,
we only need to introspect write operations.

We use the open source virtual storage introspection engine for QEMU/KVM as described
in [98] with a few key differences which make this feasible within a cloud framework such as
OpenStack [85]. The original implementation used QEMU’s tracing framework to capture writes.
QEMU’s tracing framework was designed for debugging purposes, and is not built into the QEMU
executable by default. No vendor provides production QEMU builds with tracing activated—indeed
QEMU advises against including <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>